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Dynamical systems with nonlocal connections have potential applications to 
economic and biological systems. This paper studies the dynamics of nonlocal 
cellular automata. In particular, all two-state, three-input nonlocal cellular 
automata are classified according to the dynamical behavior starting from 
random initial configurations and random wirings, although it is observed that 
sometimes a rule can have different dynamical behaviors with different wirings. 
The nonlocal cellular automata rule space is studied using a mean-field 
parametrization which is ideal for the situation of random wiring. Nonlocal 
cellular automata can be considered as computers carrying out computation at 
the level of each component. Their computational abilities are studied from the 
point of view of whether they contain many basic logical gates. In particular, 
I ask the question of whether a three-input cellular automaton rule contains the 
three fundamental logical gates: two-input rules AND and OR, and one-input 
rule NOT. A particularly interesting "edge-of-chaos" nonlocal cellular 
automaton, the rule 184, is studied in detail. It is a system of coupled "selectors" 
or "multiplexers." It is also part of the Fredkin's gate--a proposed fundamental 
gate for conservative computations. This rule exhibits irregular fluctuations of 
density, large coherent structures, and long transient times. 

KEY WORDS:  Nonlocal cellular automata; automata networks; classifi- 
cation of cellular automata; cellular automata rule space; critical hypersurface; 
self-organized criticality; mean-field theory; universal computation; "game of 
life"; Fredkin's gate; coupled selectors or coupled multiplexers; edge-of-chaos 
dynamics; density fluctuations; long transient behaviors; cooperative dynamics. 

1. INTRODUCTION 

1.1. Why Study Nonlocal Cellular Automata? 
It is known that many systems with a large number of interactive 
components can exhibit emergent properties--including dynamical 
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behaviors--that are not deducible from their components. There could be 
a whole spectrum of emergent properties and dynamical behaviors, cru- 
cially depending on which rule is used. Dynamical behavior as a function 
of the form of the rule is actively studied under the names Of bifurcation 
theory and the structure of the rule space. 

There is another factor which determines the dynamical behavior of a 
system, that is, the way components are coupled to each other. In the 
modeling of the physical world, there are not many choices for the form of 
the coupling because the interaction is always local; consider, for example, 
the molecular interaction in a fluid. Even if some long-range correlations 
exist, they are caused by the accumulation and propagation of the local 
interactions, and there is no need for introducing nonlocal connections 
explicitly at the low-level description of the system. 

Dynamical behavior of systems with local interactions is studied in 
partial differential equations, coupled ordinary differential equations, ~6~ 
coupled map lattices, ~9) and cellular automata. (58' 61, 71) It  is well understood 
now that by moving from one "polar point" to another in the. rule space, 
a series of dynamical behaviors can be exhibited by the system. A typical 
such series includes the fixed-point dynamics (laminar phase), periodic 
dynamics, locally chaotic dynamics, various types of "edge-of-chaos" 
dynamics (spatiotemporal intermittency, breaking up of the domain 
walls, complex glider interactions, etc.), and the global chaotic dynamics 
(turbulent dynamics). 

For systems with a nonlocal connection, the dynamics does not 
necessarily differ from that of the locally-connected system, as will be 
shown in this paper. This is especially true if the locally-connected system 
already exhibits a globally chaotic dynamics. NevertheleSs, the modes of 
"edge-of-chaos" dynamics in the nonlocal systems are expected to change 
drastically from those in local systems, because in the latter case the slow 
propagation of perturbation in space is important in separating them from 
either the regular or the chaotic systems, whereas the concept of space is 
completely modified in nonlocal systems. One purpose of this paper is to 
identify the edge-of-chaos dynamics in nonlocal systems. 

The study of dynamical behaviors in nonlocally coupled systems is not 
purely academic. There could be many possible applications in the real 
world. For example, since the basic assumption of locality in physics is 
violated in economics and biology--considering how neurons are con- 
nected in the brain and how information concerning the price of a stock is 
shared by agents who read the same tickertape--these fields could be good 
candidates for applications of the nonlocal systems studied here. 

To start the study of dynamical behaviors in nonlocal systems, I will 
concentrate on a particular class of systems: the nonlocal cellular automata. 
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This name is used to identify a subset of the network or automata network 
by the following three requirements: (a) the space, time, and state values 
of each component are discrete (and the state value is usually finite); 
(b) the dynamical rule applied to one component is the same as those 
applied to all other components; (c) the updating of the state value of every 
component is synchronized. In brief, the definition of nonlocal cellular 
automata is almost the same as that of usual cellular automata except that 
here nonlocal connection is allowed. 

If the requirement (b) is violated, we have, as examples of both nonlo- 
cal and local connections, the random networks studied by Kauffman (26' 27) 
and the inhomogeneous cellular automata. (62) If the requirement (c) is 
violated, we have, again as examples of both nonlocal and local connec- 
tions, many neural network models (49) and statistical-physics-motivated 
models.(43, 44) Asynchronous updating seems to be a more realistic descrip- 
tion of brain activities. The dynamics for these systems should also be 
interesting, but will not be covered in this paper. 

Another feature of the systems studied in this paper is that they are 
sparsely connected instead of fully connected. If n represents the number of 
inputs each component received, n is equal to 3 throughout the paper. This 
restriction may not make the system a good model for, e.g., the stock 
market, because the interaction among agents in a stock market is usually 
global. For some recent studies of globally coupled maps or oscillators, see 
refs. 22, 23, 69, 59, and 45. 

The only previous study of which I am aware on similar systems was 
done by Walker and Ashby. (63 67) They also consider the n = 3  case 
exclusively. Nevertheless, it is required that one of the three inputs is from 
the component itself. No special name is given by Walker to the system 
with this particular requirement; sometimes these are called "Ashby nets," 
other times they are loosely referred to as "a class of complex binary nets" 
or "sparsely connected Boolean nets." To be consistent, I will call them 
partially-local cellular automata, to distinguish them from the fully-nonloeal 
eellular automata. Various types of connection will be further discussed in 
the next subsection. 

1.2. Wiring Schemes of Nonlocal Connection 

Considering a system with N components, each component i has a 
state value x~ at time t ( i=  1, 2,..., N). A three-input (n = 3) rule f ( .  ) can be 
specified in the form 

X~ +1 =f(x~,(i) ,  X~2(i), X~3(i)) (1.1) 

822/68/5-6-11 
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where j l( i) ,  j2(i), and j3(i) are somehow randomly chosen from among the 
N components. 

I identify four different types of wiring schemes, i,e., how j l(i),  j2(i), 
and j3(i) are chosen (illustrated in Fig. 1). For comparison, the local con- 
nection is also listed: 

(0) Local connection: j l ( i )  = i -  1, j2(i) = i, j3(i) = i +  1. The first 
input is the left neighbor, the second input is the site itself, and the third 
input is the right neighbor. 

(1) Partially-local connection: j2 ( i )=i ,  but j~(i) and j3(i) are 
randomly chosen. In practice, one simply generates two indices randomly 

(a) 

partially-local 

(b) 

partially-local 
(distinct inputs/outputs) 

(c) 

non-local 

(d) 

non-local 
(distinct inputs/outputs) 

Fig. 1. Illustration of the four possible wiring schemes of nonlocal connection. (a) Partially- 
local connection with possibly degenerate inputs; (b) distinct-input partially-local connection; 
(c) fully-nonlocal connection with possibly degenerate inputs; (d) distinct-input fully-nonlocal 
connection. 
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between 1 and N for each i, then assigns the two as the first and the third 
inputs for that size i. Degeneracy of inputs might be possible, whenever two 
among the three inputs are the same. For  example, in Fig. la, site i =  1 
obtains two inputs from site i = 2. 

(2) Distinct-input, partially-local connection: j2(i) = i, j l ( i )  and j3(i) 
are randomly chosen, but it is checked that none of the two inputs among 
the three inputs for site i are the same. In practice, one generates two 
indices randomly between 1 and N, then compares the two indices as well 
as the index i. If two of them are the same, regenerate another index again 
randomly to replace one of the degenerate indices. Repeat the comparison 
until none of the two are the same. 3 

(3) Fully nonlocal connection: all inputs jl(i), j2(i), and j3(i) are 
randomly chosen. Again, degeneracy of inputs might be possible whenever 
two of the three inputs happen to be the same. 

(4) Distinct-input, fully nonlocal connection: all inputs j l ( i ) ,  j2(i),  
and j3(i) are randomly chosen, and it is checked that none of the two 
inputs among the three inputs for site i are the same. 

It is important to distinguish the partially-local connection from the 
fully-nonlocal one, because the former can still share some features with the 
locally-connected dynamical systems--for example, the single-site "domain- 
wall"--whereas the latter does not have anything similar. 

It is also useful to distinguish the case of a degeneracy-permitted con- 
nection from that of a distinct-input connection. If, for example, the first 
input is identical with the second input, the part of the rule table which 
specifies the updating of the state value when x~l(i).r x t will never be j2(i) 
used. On the other hand, the distinct-input case makes full use of the rule 
table. Intuitively, the difference between cases (1) and (2), and between (3) 
and (4), should be diminishingly small when the system size is large. 
Nevertheless, it has been observed that for some rules, sample statistical 
quantities (e.g., average cycle length) are always different between the 
degeneracy-permitted and distinct-inputs connections even in the infinite- 
size limit. 

Finally, note that there is a difference between all possible nonlocal 
connections and a typical nonlocal connection. The first case should also 
include the local connection as a special case, whereas the second case 
refers to a typical realization of the nonlocal wiring using some random 
number generators. 

3 It is possible, though, that the last remaining site does not have any choice but to choose 
the degenerate inputs. In this case, one has to restart the selection process. 
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1.3. Topics To Be Discussed in This Paper 

This paper studies the dynamical behavior of two-state, three-input 
nonlocal cellular automata, and compares them with those of the 
corresponding local cellular automata. Special attention will be paid to 
observations which lead to new concepts that are absent or less important 
in locally-connected dynamical systems. I will discuss three of them: (1) the 
"cleanness" of the rule space parameterized by mean-field parameters; (2) 
computation at the level of each component; and (3) new modes of "edge- 
of-chaos" dynamics. 

The first topic is about how rules with different dynamical behaviors 
are distributed in the cellular automata rule space. As studied by Langton, 
Packard, and Li, (31' 32, 35 37)it is now well understood that if all the cellular 
automata rules are organized in the rule space with some appropriate 
choice of the distance such as the Hamming distance between two rule 
tables, the rules with similar dynamical behavior tend to reside in the same 
region of the rule space. 

The boundary between two regions with different dynamical behaviors 
plays the role of the critical point in the phase transition (though the 
dimensionality of this boundary is much higher than a typical critical 
"point" that we are familiar with in statistical physics). In the large-rule- 
space limit, the presumably discrete jump from one rule to another is 
almost continuous. In this limit, one can classify the transition from one 
dynamical behavior to another as being either first order (if the change of 
dynamics is sudden) or second order (if the change of dynamics is smooth). 

This study of the structure of the rule space can also be viewed as a 
multiparameter, high-dimensional analog of the study of bifurcation 
phenomena, which is done mostly in single-parameter, lower-dimensional 
dynamical systems. Notice though that one should distinguish the dimen- 
sion of the rule space (the number of parameters) with that of the real 
space (the number of components). Since high-dimensional systems usually 
need more parameters to specify, the dimensionality of the rule space may 
also become larger. 

It has been observed that the boundary separating periodic and 
chaotic dynamics in the local cellular automata rule space is highly rugged, 
and defies an easy parametrization. (37) The simplest parametrization, called 
the 2-parametrization, is by varying a single parameter which, in the case 
of a binary state, is the fraction of entries in the rule table that are equal 
to state 1. (3o) The transition from periodic to chaotic dynamics can occur 
at different points on the 2 axis, although it is suggested that the transition 
might be made sharper in the 2-parametrization by increasing the number 
of states. (76) 
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In the next simplest parametrization, the mean-field parametrization, 
more parameters are used, which not only count the fraction of the 
configurations which are mapped to state 1, but also examine what type of 
configurations are mapped to 1. The mean-field parametrization improves 
the description of the transition surface or critical surface, but it still fails 
frequently to make the correct predictions on the behavior of local cellular 
automata. 4 The study of the nonlocal cellular automata rule space will 
show that mean-field parametrization gives a far better prediction of the 
location of the transition surface. A similar observation that mean-field 
theory describes nonlocal systems much better than local systems is also 
made in ref. 56. 

The second topic is about nonlocal cellular automata as computers. 
There has been much discussion about local cellular automata as com- 
puters, such as the two-dimensional, two-state, nine-input rule "game of 
life. ''~21 This rules as well as many other local cellular automata can carry 
out any computation because as certain moving local patterns ("gliders") 
emerge and interact with other local patterns, basic logical functions 
(AND, OR, NOT)  can be simulated. Since any computational task can be 
coded as a series of basic logical functions, these rules are equivalent to the 
universal computer. It is known that the number of local cellular automata 
rules which are equivalent to the universal computer is small. Most rules 
cannot carry out universal computation. 

The situation is quite different for nonlocal cellular automata. Since 
any two components can be connected directly, there is no need to produce 
gliders that simulate basic logical functions. In fact, a rule is a universal 
computer as long as it contains the basic building blocks of all logical func- 
tions, for example, (AND, NOT),  or (OR, NOT),  or (NAND, COPY), 5 or 
(NOR, COPY). This condition is easily satisfied by many two-state, 
three-input nonlocal cellular automata. As a result, there are many more 
universal computers in nonlocal cellular automata than in local ones. 

On the other hand, being a universal computer does not mean it is 
"easy" to carry out a specific computation. We all know how slow and 
clumsy it is for a Turing machine to add two numbers together. The 
situation is similar for nonlocal cellular automata. A rule which contains 
(AND, NOT, OR) will carry out a computational task more easily than a 
rule containing only (AND, NOT),  though both of them are universal 
computers. Then we can ask which rules contain the largest number of 
logical functions. This tells us something about the computational ability of 
the rule. 

4 A discussion of other parametrizatior/schemes for local cellular automata rule space is given 
in ref. 33. 

5 NAND ~- NOT(AND),  and NOR -= NOT(OR).  
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The last topic to be discussed in some detail is a new mode of the 
"edge-of-chaos" dynamics 6 in nonlocal cellular automata. The edge-of- 
chaos dynamics in locally-connected dynamical system is studied in several 
systems, such as the spatiotemporal intermittency in coupled map lattices, 
the glider activity in "class-4 ''(72) cellular automata, etc. In these systems, 
small but positive Lyapunov exponents, long-range correlations, long 
transients, and poor convergence of the statistical quantities are all 
considered as the hallmarks of the edge-of-chaos dynamics. In nonlocal 
systems, the criteria of the long transients and the poor convergence of the 
statistical quantities are still applicable, but is is difficult to define 
long-range correlation, as well as any other concepts related to the space. 
Here the concept of "coherent structure" is used, and some preliminary 
calculations are carried out to identify the existence of such cooperation 
among components. 

This paper is organized as follows: Section 2 reviews the basic results 
on two-state, three-input local cellular automata. Section 3 discusses the 
corresponding cellular automata with partially-local and fully-nonlocal 
connections; the dynamics is classified, and the rule space with mean-field 
parametrization is shown. Section 4 attempts an understanding of the rule 
space in the mean-field parametrization discussed in the previous section. 
Section 5 discusses the computational abilities for nonlocal cellular 
automata rules, especially whether they contain the basic logical gates 
AND, OR, and NOT. Section 6 studies what I consider to be the most 
interesting two-state, three-input nonlocal cellular automaton, the rule 184, 
also called "coupled selectors" or "coupled multiplexers," and discusses 
various aspects of its dynamics. 

2. REVIEW OF ELEMENTARY LOCAL CELLULAR A U T O M A T A  

The simplest cellular automata (excluding the trivial zero-input and 
one-input cases) are those with two inputs and two states. Since there are 
22 different input configurations, each configuration can be mapped to 
either 0 or 1, the total number of possible rules is 222= 16. The names of 
these 16 rules are listed in, e.g., refs. 13 and 68. Actually, the number of 
independent two-state, two-input rules is only seven. Out of these seven 
rules, one is actually a zero-input rule and two are one-input rules. So the 
number of independent "true" two-input rules is four. Out of these four 
rules, one is chaotic ("exclusive or," or XOR) and three are nonchaotic. 

6 The name "edge-of-chaos" was first used by Packard; 14s) other names, such as the complex 
dynamics, critical dynamics, boundary dynamics, in-between dynamics, etc., can also be 
used. 
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Such a rule space is too small to study the generic structure of rule space 
in general. 

The next simplest cellular automata are those with two states and 
three inputs, also called elementary rules in ref. 71. I will use the same name 
in this paper. The number of all possible elementary rules is 223= 256, and 
the number of independent rules is actually 88.  (63' 71, 36) There are 14 rules 
that are actually zero-, one-, or two-input rules, 7 so the number of inde- 
pendent "true" three-input rules is 74. The elementary cellular automata 
with local connections are extensively studied in refs. 17, 20, 33, 36, 70, 71, 
73, and 75, among others. This section will review some of the most rele- 
vant properties of these rules. For more detail, see the original publications. 

2.1. Rule Tables,  M e a n - F i e l d  Parameters ,  and A Paramete r  

As shown by Eq. (1.1), a cellular automaton rule is specified when the 
value of x~ + 1 is given for all possible input configurations. With two states 
and three inputs, the number of the input configurations is 23 = 8. I write 

ao = f (0 ,  0, 0), a~ = f ( 0 ,  0, 1), a2 = f (0 ,  1, 0), a 3 = f (0 ,  1, 1) 
(2.1) 

a4 = f (1 ,  0, 0), a5 = f ( 1 ,  0, 1), a6 = f (1 ,  1, 0), a7 = f (1 ,  1, 1) 

or equivalently 

0 0 0 ~ a o ,  0 0 1 ~ a  1, 010--*a2, 0 1 1 ~ a  3 
(2.2) 

100---~a4, 1 0 1 ~ a s ,  l10---~a6, l l l ~ a 7  

to specify the rule. 
The rule is completely determined by these ais, which can be repre- 

sented either by a rule table 

R T ~  {a7, a6, as, a4, a3, a2, al,  ao} 

or by a rule number, which is the decimal representation of the above 
binary string (71): 

7 

RN =- ~ ai 2i 
i = 0  

For example, the rule number for tule table {0, 0, 0, 0, 0, 0, 0, 1} is 1; and 
that for rule table { 1, 0, 0, 0, 0, 0, 0, 1 } is 129. 

v The rule numbers (to be explained in this section) for these rules are: (1) zero-input: 0; 
(2) one-input: 15, 51, 170, 204; and (3) two-input: 3, 5, 10, 12, 34, 60, 90, 136, 160. 
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Since it is not important which state is labeled as 0 and which as l, 
interchanging 0 and 1 leads to an equivalent rule: 

{ao, al ,  a2, a3, a4, as, a6, ~77} 

where 0 =  1 and ]-=0. Also, since the space is not directional, inter- 
changing left and right inputs also leads to an equivalent rule: 

a7, a3, a5, al ,  a6, a2, a4, ao} 

Finally, applying both interchanging operations mentioned above, one has 
the third equivalent rule: 

ao, a4, a2, a6, al,  as, a3, a7} 

The number of independent rules, 88, is derived by checking all possible 
equivalence relations among the rules. 

A rule table gives complete information about the rule being repre- 
sented. Nevertheless, sometimes one might not want to know all the infor- 
mation, and consider several rules to be "more or less" the same. This is 
where the mean-field parameters come in. ~53' 18. 36) In the case of elementary 
cellular automata, the entries al, a2, and a 4 in the rule table may be 
considered to play a similar role, because their input configurations all 
contain one 1 and two O's. Similarly, the entries a3, as, and a 6 are all 
related to the input configurations containing two l's and one 0. The mean- 
field parameters are defined by 

nl -= number of bits among al,  a2, and a 4 that are equal to 1 

n 2 -  number of bits among a3, as, and a6 that are equal to 1 

and for a similar reason, 
no = ao 

F/3 ~ 0 7 

Now instead of a rule table, we have a mean-field cluster {no, nl, n2, n3} 
which contains several rule tables that are "similar" to each other. 

It can be easily checked that relabeling 0 and 1 transforms the mean- 
field cluster {no, nl,n2, n3} to { l - n 3 ,  3 - n 2 ,  3 - n l ,  1 - n o } ,  while the 
interchange of left and right inputs does not change the mean-field 
parameters. 

An even cruder piece of information about a rule table is the number 
of entries in the rule table that are equal to 1 (for binary states case). It is 
the so-called 2 parameter: ~3~ 

2 = number of bits among {a;} ( i=  0, 1,..., 7) that are equal to 1 
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One can also define the normalized 2 parameter as the fraction of these 
entries (I will use the same symbol for both unnormalizer and normalized 
2 parameters. The context should make it clear which one is used.) The 
information about a rule table provided by the 2 parameter seems to be 
almost minimum. But satisfyingly, 2 is a reasonably good indicator of how 
regular or how chaotic the dynamics is. The relationship between the 2 
parameter and the mearr-field parameters is 

2 = n 0 + n l  +n2+n3 

2.2. Classi f icat ion of  the  Local Cel lu lar  A u t o m a t a  Rules 

The dynamics of a cellular automaton rule typically refers to dynami- 
cal behavior exhibited by the rule when starting from ao random initial 
configuration. If one starts from a special initial configuration, for example, 
x i = 0  for all i's, only the function f(0, 0, 0), or the entry ao in the rule 
table, is' used. Consequently, the dynamics as started from this special 
initial configuration will not characterize the generic behavior of the rule. 
In other words, the "democracy" of all entries in the rule table must be 
guaranteed. 

One simple classification of all elementary rules is the following (see 
also refs. 72 and 36): 

1. Null rules: the limiting configuration is all 0's or all l's. 
0, 8, 32, 40, 128, 136, 160, 168. 

2. Fixed-point rules: the limiting configuration is invariant by apply- 
ing the updating rule (with possibly a spatial shift; if this is the 
case, the rule is marked by an asterisk), excluding all-0's or all-l's 
configurations. 
2*, 4, 10", 12, 13, 24*, 34*, 36, 42*, 44, 46*, 56*, 57*, 58*, 72, 
76, 77, 78, 104, 130", 132, 138", 140, 152", 162", 164, 170", 172, 
184", 200, 204, 232. 

3. Two-cycle rules: the limiting configuration is invariant by applying 
the updating rule twice (with possibly a spatial shift; if this is the 
case, the rule is marked by an asterisk). The dynamics for rules 14 
and 142 can also be fixed point with a shift for some initial 
conditions. 
1, 3*, 5, 6*, 7*, 9*, 11", 14", 15", 19, 23, 25, 27*, 28, 29, 33, 35*, 
37, 38*, 43*, 50, 51, 74*, 108, 134", 142", 156, 178". 

4. Periodic rules: the limiting configuration is invariant by applying 
the updating rule L times, with the cycle length L either independ- 
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ent or weakly dependent on the sequence length (in the latter case, 
one could introduce a subclass). In particular, rules 131 and 133 
typically exhibit local three-cycle dynamics, and their global cycle 
length can either be 3 or 6. Rule 73 has regions with chaotic 
behavior and can be called a locally-chaotic rule. ~36) 
26, 41, 73, 131 (or 62), 133 (or 94), 154. 

. Edge-of-chaos rules ("complex rules" or "boundary rules"): 
although their limiting dynamics may be periodic, the transient 
times reaching the limiting configuration can be extremely long, 
and they typically increase at least linearly with the system size. 
One hallmark of this class of rules is its marginal stability (or 
instability) with respect to perturbations, and another is its poor 
convergence of any statistical property such as the transient time. 
54, 137 (or 110). 

. Chaotic rules: nonperiodic dynamics. They are characterized by 
the exponential divergence of the cycle length with the system size, 
and the instability with respect to perturbations. The transient 
time can either be long or short. 
18, 22, 30, 45, 60, 90, 105, 106, 129 (or 126), 146, 150, 161 (or 
122). 

The rule number inside parentheses is the representative rule number 
used in ref. 75, which is the smallest value among all rule numbers of equiv- 
alent rules. The representative rule number used in this paper as well as ref. 

36 is the one with the smallest ~ parameter value. If several equivalent rules 
have the same )~ value, then pick the one with the smallest rule number. 

There can be many different classification schemes, depending on 
the degree of coarse graining. The crudest classification scheme might 
be the one which only distinguishes chaotic and nonchaotic rules. Most 
of the rules are easy to classify whatever the classification scheme used. For 
example, a rule is classified as being chaotic by any of the following criteria: 
large spatiotemporal entropy, positive expansion rate of perturbation, 
absence of periodic dynamics in the infinite-system-size limit. On the other 
hand, the classification of the edge-of-chaos rules is destined to be difficult. 
Take rule 137 (or 110), for example; its cycle length for the limiting 
dynamics with a finite system size is much shorter than a typical chaotic 
rule, so in some sense it belongs to the class of periodic rules. Nevertheless, 
a perturbation in rule 137 usually spreads in space (though slowly), so it 
is similar to a chaotic rule. The notable examples of the "hard-to-classify" 
elementary rules are rules 73, 54, and 137 (or 110). 
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2.3. Rule Space  w i t h  the  M e a n - F i e l d  Pararnetr iza t ion  

When all cellular automata rules are organized in a single space with 
an appropriate choice of the distance between two rules, the space is called 
a rule space. The standard measure of the distance between two integer 
sequences of the same length is the Hamming distance, which is the sum 
of the differences (always nonnegative) between two values at the two 
corresponding sites of the two sequences. For example, the Hamming 
distance between {0, 0, 0, 1, 1, 0, 0, 0 } and { 1, 0, 0, 1, 1, 0, 1, 0 } is two. 

The dimension of the elementary cellular automata rule space is equal 
to eight, and the distance along each dimensional axis is one, so it is an 
eight-dimensional hypercube. The location of a rule in the rule space can 
be considered part of the genotype of the rule, and dynamical behavior 
exhibited by the rule is the phenotype.  135' 36) How genotype determines 
phenotype describes the structure of the rule space, which is studied in 
ref. 36. 

Here I will review the result about rule space with mean-field 
parametrization. Although this parametrization is not that perfect for local 
rules, it gives an extremely good picture of the structure of the fully- 
nonlocal rule space (to be discussed in later sections). The dimension of the 
space is four, since each mean-field cluster is labeled by four parameters 
{no, nl, n2, n3}. The distance along n o and//3 is 1, and the distance along 
nl and n2 is 3. 

The picture of a four-dimensional space is still difficult to draw, and 
I will fix two parameters (no and n3), and vary the other two (n 1 and n2). 
There are good reasons to fix no, n3 instead of nl, n2. First of all, there are 
only two possible values for no and n3. Second, these parameter values are 
more important in determine the dynamical behavior of the rule. Actually, 
the entries ao (=no) and a 7 (-----n3) of the rule table are called "hot bits" in 
ref. 36. 

There are four possibilities for the no, n3 values: (1) n o = n 3 = 0 ;  
(2) no=0,  n 3 = l ;  (3) n o = l ,  n3=0;  and (4) n o = n 3 = l .  The last case is 
equivalent to the first case by interchanging 0 and 1, which leaves three 
independent "slices" of the rule space. The rule clusters in the first 
slice {no, n~, nz, n3} = {0, , ,  , ,  0} are called "nonlinear clusters" in ref. 36 
because the x~ + 1 versus Z~-1  xjk(i)plot looks like a nonlinear logistic map 
(that is, both low-density and high-density configurations lead to state 0). 
Those in the second slice {0, *, *, 1 } are called "linear clusters," and those 
in the third slice {1, , ,  ,, 0} are called "inversely linear clusters. ''~36) (The 
wild card symbol �9 can be either 0 or l.) The nl and n 2 are increased from 
0 to 3 along the two parameter axes. See Figs. 2a-2c for the three slices of 
the rule space. 



Fig. 2. The rule space for local  cel lular  a u t o m a t a  wi th  mean-f ie ld  paramet r iza t ion .  The  rule 
number s  con ta ined  in each mean-f ie ld  c luster  are listed. The second and  the th i rd  mean-field 

pa ramete r s  n 2 and  n 3 vary  from 0 to 3. The rules with long  t rans ients  (rules 54 and  137) are 
marked.  (a)  The slice of the rule space con ta in ing  "non l inear  clusters" wi th  n o = 0 and  n 3 = 0. 
(b) The  slice of the rule space  con ta in ing  " l inear  clusters" wi th  n o = 0 and n 3 = 1. (c) The slice 
of the rule space con ta in ing  " inversely l inear  clusters" with n o = 1 and/73 = 0. 
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Usually, each cluster contains more than one rule, and each dynamical 
behavior exhibited by a rule in that cluster is indicated by a different 
texture of the block. The darker the texture, the more chaotic the 
dynamics. Sometimes, rules in a mean-field cluster all have the similar 
dynamical behavior; for example, the cluster {0, 1, 1, 1 }, which contains 
fixed-point rules 138, 140, 152, and 162. Other times, the mean-field 
description is not that good; see, for example, the cluster { 1, 1, 2, 0), which 
contains rules 57, 77 (fixed-point dynamics), rule 43 (two-cycle dynamics), 
and rule 45 (chaotic dynamics). 

There are several general observations of Fig. 2: 

1. The slice with nonlinear clusters contains rules of all types of 
dynamical behavior. Roughly speaking, by moving from the upper 
left part (small nl) to the lower right part (large n~) of Fig. 2a, one 
observes the familiar bifurcation to chaos series reminiscent of that 
in the logistic map. (46) Especially, rules 131, 133 with local cycle 
length equal to 3 are located inside the chaotic regime. Whether 
this is an accidental event or not, the similarity with the three- 
cycle window in the logistic map is striking. 

2. The slice with the linear clusters contains mostly fixed-point rules, 
with the exception of the lower right corner of Fig. 2b. 

3. The slice with the inversely-linear clusters contains mostly two- 
cycle rules, with the exception of the lower left corner of Fig. 2c. 

4. The 2 parameter is increased by moving from top to bottom. It is 
clear that although it points to the correct direction from regular 
dynamics to chaotic dynamics, it is not exactly perpendicular to 
the bifurcation plane. 

These observations will be further discussed in Section 4. 

3. ELEMENTARY CELLULAR A U T O M A T A  WITH PARTIALLY- 
LOCAL A N D  FULLY-NONLOCAL C O N N E C T I O N S  

Before going into the discussion of nonlocal cellular automata, let me 
summarize what we know about local cellular automata: 

1. For null rules, it is usually the case that a large percentage of the 
three-input configurations are mapped to the same state value 
such as 0, and the three-input configuration 000 also leads to 0, so 
the all-0's configuration is the attracting invariant configuration. 

2. For inhomogeneous fixed-point rules, some nonzero state can 
survive due to updating rules like 010 --* 1. At the mean time, most 
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other three-input configurations are mapped to 0, so the dynamics 
is static but the spatial configuration is not all 0's. 

3. For two-cycle rules, there is typically an alternating activation of 
the three-input configurations. For example, if 0 0 0 ~  1 and 
111 ~ 0, the 000 configuration activates the 111 configuration, and 
vice versa; then the chance for a two-cycle dynamics is large. 

4. The rules with complex dynamics are most difficult to understand. 
But typically, there are spatial regions that become either 
homogeneous or periodic (called background), whereas in other 
regions some moving local configurations emerge. If the local con- 
figuration moves with a constant speed, it is called a glider; if it 
moves irregularly (only when the background with which it inter- 
acts has structure in itself, such as periodic), it is called a defect, 
or domain wall. (If the distinction between background and the 
gliders or defects is not all that clear, especially at the early stage 
of the transient, the name creature can also be used. (34)) The 
gliders or defects interact with each other when they collide, 
generate other gliders or defects, or are simply annihilated, until 
all of them disappear or coexist in an equilibrium state. 

5. For chaotic rules, almost all three-input configurations are 
activated everywhere in the space. There are no localization effects: 
any change in one region of the space will propagate to other 
regions of the space. 

Now we ask how the introduction of nonlocal connection affects the 
mechanisms behind the various dynamics as discussed above. For null 
rules, the effect is very small. Whether the three inputs are taken from the 
neighbor or from three unrelated sites, the convergence to the all-0's con- 
figuration is equally strong. Nevertheless, examples exist where some rules 
having null dynamics with local connections might have fixed-point 
dynamics with nonlocal connections. 

For fixed point with a shift rules, the effect is to increase the cycle 
length from 1 to a large value depending on the wiring. This case is best 
illustrated by rule 1, which has updating rule 001 --+ 1 and all other three- 
input configurations are mapped to 0. The reason that the cycle length is 
1 along certain spatiotemporal direction in the case of a local connection 
is purely because of the third input being the right input. In a nonlocal 
connection, however, any state value 1 will jump from a third input of 
a site to the site itself, and to another site which takes the site as the third 
input. Such jumping is determined completely by the wiring diagram. 

As for chaotic rules, the effect of introducing nonlocal connection is 
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not very large. Almost all three-input configurations are activated 
throughout the system whether or not the connection is local. The only 
class of dynamical behavior that will be changed dramatically is the 
complex or edge-of-chaos dynamics, because concepts such as background 
and gliders no longer exist. This will be discussed in Section 6. 

The characterization of the dynamical behavior of a nonlocal cellular 
automaton rule is complicated by the fact that there are so many choices 
of random wiring, and there is no guarantee that all random wirings will 
give the same dynamics. Although a similar problem exists in local cellular 
automata with respect to different initial conditions, it deserves more 
attention for nonlocal cellular automata because wiring seems to have a 
stronger control over the dynamics than the initial configuration. 

In the following, I will list the numerically observed dynamical 
behaviors for all elementary cellular automata with partially-local and 
fully-nonlocal connections. The definite classification of the dynamics of 
some rules might be impossible, as some random wirings lead to one 
behavior while other random wirings lead to another, and the classification 
used here for some rules should not be considered as conclusive. 

3.1. Classif ication of  Partial ly-Local Rules, and Their  
Rule Space 

The partially-local cellular automata were first studied by Walker and 
Ashby f63) and some statistical quantities such as the cycle lengths are deter- 
mined for small system sizes. In this subsection, I will base my classification 
of rules on the observation of spatiotemporal patterns starting from ran- 
domly chosen initial conditions. Comments are made whenever applicable 
if the dynamics from the degeneracy-permitted connections (Fig. la) differ 
from those with the distinct-inputs connections (Fig. lb). Even if we have 
chosen the wiring type, different samplings of the wiring as well as initial 
conditions may still lead to different dynamics, as illustrated in Fig. 3 for 
rule 74. More careful studies are needed to determine the probability of 
having one dynamics versus another dynamics (for example, by determin- 
ing the distribution of cycle lengths). These studies will be included in a 
future publication. 

The classification is the following: 

1. Null dynamics for almost all wirings (N): 
0, 32, 128, 160. 

2. These rules can have either null dynamics or fixed-point 
dynamics, although some rules (e.g., rule 8) tend to have more 
null dynamics, whereas others (e.g., rule 200) tend to have more 
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Fig. 3. Spat iotemporal  pat terns for rule 74 of degeneracy-permitted partially-local connec- 
tions. Sixteen different initial configurations as well as different r andom wirings are sampled: 
some of them lead to all-0 configuration, some lead to the inhomogeneous  configurations with 
a few walls, and some of them exhibit periodic dynamics. The system size is 134, the number  

of time steps is 68. 

fixed-point dynamics. Rules 72 and 168 behave more like null 
rules in the distinct-input connections (N-F): 
8, 40, 72, 104, 136, 168, 200. 

3. Fixed-point dynamics (F): 
4, 12, 76, 77, 132, 140, 142, 164, 204, 232. 

4. These rules have seemingly fixed-point dynamics (many domain 
walls), but actually sometimes have local two-cycle or local 
periodic modes. Rules 36 and 44 almost always have local 
periodic modes. Except for these two rules, others are more like 
fixed-point rules for the distinct-input connections (F-P): 
13, 14, 36, 44, 78, 172. 

5. These rules can have either null, fixed-point, or periodic 
dynamics. For the distinct-input case, both rules no longer 
exhibit the null dynamics, and rule 138 no longer exhibits the 
fixed-point dynamics (N-F-P, or simply N-P): 
74, 138. 

6. Two-cycle dynamics (2): 
1, 5, 7, 19, 23, 33, 35, 43, 50, 51, 178. 

7. These rules can have either two-cycle dynamics or longer-cycle 
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periodic dynamics. The distinct-input connection makes them 
behave more like periodic rules (2-P): 
3, 11, 27, 29. 

8. Periodic rules. The distinct-input connection makes the cycle 
lengths much longer (P): 
6, 15, 28, 34, 42, 108, 134, 156, 162, 170, 184. 

9. These rules are basically periodic rules, but can also have null 
dynamics. They are most likely to correspond to the fixed-point 
dynamics with a shift when the connection is back to local. The 
distinct-input connection usually changes them to purely periodic 
rules (N-P): 
2, 10, 24, 56, 130, 152. 

10. These rules can exhibit either periodic dynamics or chaotic 
dynamics (at least with very long cycle lengths). The distinct- 
input connection turns them into chaotic (or periodic with 
extremely long cycle lengths) dynamics (P-C): 
25, 38, 46, 58, 60, 106, 131, 154. 

11. Chaotic rules (C): 
9, 18, 22, 26, 30, 37, 41, 45, 54, 57, 73, 90, 105, 129, 133, 137, 146, 
150, 161. 

The rules space as "decorated" by the above classification is shown in 
Fig. 4. One can see that is is not unusual that one mean-field cluster 
contains rules with several different dynamical behaviors: an indication 
that mean-field theory fails badly. One obvious explanauon is that for par- 
tially-local connections, the central input and the two other inputs are not 
equal, and play quite different roles. In order to take this into account, 
consider the following refined mean-field parameters: 

n l ( 0 ) -  number of bits among al and a4 that are equal to 1 

nl(1)=-a2 

The reason for this is that in 001 --* al,  100--* a4, and 010--* a2, though all 
three input configurations contain one 1 and two O's, the 1 in configuration 
010 is located in the central position, whereas in 001 and 100 it is 
not. These two parameters simply split the original nl parameter: 
n i = n 1(0) + n 1(1 ). Similarly, define 

n2(1) -number  of bits among a3 and a 6 that areequal to 1 

n2(0) - a5 

to split the original n2 parameter. 

822/68/5-6-12 
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Fig. 4. The rule space for partially-local cellular au tomata  with mean-field parametrization, 
similar to Fig. 2 for the local cellular automata,  
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no, (nl(0), nl(1)) , (rt2(0), n2(1)) , n 3 Rules Behavior" 

0, (1, 0), (0, 1),0 10, 24 (N-P) 
0, (1, 0), (1, 1),0 42,56 P, (N-P) 
0, (1, 1), (0, 1),0 14, 28 (F-P), P 
0, (1, 1), (1, I), 0 46, 60 (P-C) 
0, (1, 0), (0, I), 1 138, 152 (N-P) 
0, (1, 0), (1, 1), 1 170, 184 P 
0, (1, 1), (0, 1), 1 142, 156 F, P 
1, (1, 0), (0, 1), 0 11, 25 (2-P), (P-C) 
1, (1, 0), (1, 1),0 43, 57 2, C 
1,(1, 1), (0, 1),0 15,29 P, (2-P) 

N, null; F, fixed point; 2, two cycle; P, periodic; C, chaotic. If more than one symbol is 
linked with a hyphen, the dynamics can be either one of them starting from different wirings 
and different initial conditions. 

With the refined mean-field parameters, each cluster is labeled by six 
parameter values: {no, (nl(0), nj(1)), (n2(0), n2(1)), n3}. All except ten 
clusters contain only one rule. These ten excepted clusters each contains 
two rules. The clusters and dynamics of these rules are given in Table I. 
One can see that even with the refined mean-field parameters, the predic- 
tion is not as good as expected. 

3.2. Classification of Fully Noniocal Rules, and Their Rule 
Space 

The number of independent rules in fully nonlocal connection is 
smaller than that in local and partially-local connections (which is 88), 
because one can switch and relabel not only the first and the third inputs, 
but also the first and the second inputs, or the second and the third 
inputs. When the first and the second inputs are interchanged, we have an 
equivalent rule: 

{a7,  a6 ,  a3 ,  a2 ,  a s ,  a4 ,  a t ,  ao} 

and when the second and the third inputs are interchanged, we have 
another equivalent rule: 

{aT, as, a6,  a4,  a3,  a l ,  a2,  ao} 

From these equivalent rules, we can get more equivalent rules by inter- 
changing 0 and 1. By considering all possible equivalent relations, there are 
only 46 independent rules left. 
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The classification of these 46 rules is listed below. In order to make a 
comparison with the partially-local and the local cellular automata easier, 
the remaining 42 (=  8 8 -  46) rules are also listed in parentheses. 

1. Null rules: 
0, 8 (32), 40 (72), 104, 128, 136 (160), 168 (200), 232. 

2. Two-cycle rules: 
1, 3 (5), 7 (19), 23. 

3. Periodic rules: Rule 27 tends to have two-cycle dynamics if the 
degenerate inputs are allowed, periodic and longer transients if 
inputs are distinct. Rule 172 can have null, fixed-point, and peri- 
odic dynamics if the degenerate inputs are allowed, but periodic 
after an extremely long transient if the inputs are distinct. Rules 2, 
10, 24, 44, 130, 138, and 152 can also have null dynamics if the 
degenerate inputs are allowed. Rule 170 has much longer cycle 
lengths, even comparable with some rules listed as chaotic rules, 
but its transient time is very short. 
2 (4), 10 (12, 34), 15 (51), 24 (36), 27 (29), 42 (76), 44 (56, 74), 
130 (132), 138 (140, 162), 152 (164), 170 (204), 172 (184). 

4. Chaotic rules: Rules 11, 14, 43, and 142 have much shorter cycle 
lengths than other rules listed here. 
6 (18), 9 (33), 11 (13, 35), 14 (50), 22, 25 (37), 26 (28, 38), 30 (54), 
41 (73), 43 (77), 45 (57), 46 (58, 78), 60 (90), 105, 106 (108), 129, 
131 (133), 134 (146), 137 (161), 142 (178), 150, 154 (156). 

The spatio-temporal patterns for all these 46 rules with the distinct-inputs 
connection are shown in Fig. 5. 

The rules space with mean-field parametrization for fully nonlocal 
cellular automata is shown in Fig. 6 similar to Fig. 2 and 4. Besides the fact 
that the 36 mean-field clusters contain only 46 independent rules instead of 
88, each cluster excellently characterizes the dynamical behavior of rules 
contained in that cluster, as illustrated by the ten clusters which contain 
two rules (see Table II). Note that although rule 170 and rule 172 are both 
classified as periodic, rule 170 has much longer cycle lengths and rule 172 
has much longer transient times. Also, rule 15 has much longer cycle 
lengths than rule 27. 

The "cleanness" of the nonlocal cellular automata rule space as 
illustrated in Fig. 6 implies that the basic features of the dynamics can be 
accounted for by simple mean-field theory. In the next section, I will 
present some crude estimation of mean-field parameter values at which the 
transition from nonchaotic to chaotic dynamics occurs. I will also discuss 
in general terms the transition phenomena in cellular automata rule space. 
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Fig. 5. The spatiotemporal patterns of all 46 independent elementary cellular automata with 
distinct-input, fully-nonlocal connection. The system size is 77 and the number  of time steps 
is 94. It is typically easy to tell which rule is two-cycle periodic, which is chaotic, etc., from 
these patterns, except for periodic rules with very long transients (e.g., rule 27 and rule 172) 
or very long cycle lengths (e.g., rule 15). 
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Fig. 6. The rule space for fully-nonlocal cellular automata with mean-field parametrization. 
The rule with long transient (rule 172) is marked. 
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{no, nl, n2, n3} Rules Behavior ~ 

0110 10, 24 P 
0120 42,44 P 
0210 14,26 C 
022O 46,60 C 
0111 138,152 P 
0121 170,172 P 
0210 142,154 C 
1110 11,25 C 
1120 43,45 C 
1210 15, 27 P 

a p, periodic; C, chaotic. 

4. B I F U R C A T I O N - L I K E  P H E N O M E N A  IN M U L T I P A R A M E T E R  
D Y N A M I C A L  S Y S T E M S  

4.1. Cr i t ical  Sur faces  in H i g h e r - D i m e n s i o n a l  Space  

It is well understood that in lower-dimensional dynamical systems 
with one parameter, there is a transition from regular dynamics to chaotic 
dynamics by tuning that parameter. (46~ This sudden change of dynamical 
behavior with the smooth change of the parameter is studied in bifurcation 
theory.(16) 

High-dimensional dynamical systems typically need more parameters 
to describe the details of the interaction among components (though one 
can increase the degrees of freedom to infinity while keeping the number of 
parameters finite). Take elementary cellular automata, for example; a rule 
is specified by eight bits (a 0, a~,..., aT) , and each of them can be considered 
as a parameter jumping between 0 and 1. An incomplete description 
requires fewer parameters, for example, the mean-field parametrization has 
four parameters no, nl, n2, n3 varying either from 0 to 1, or from 0 to 3; 
or the 2 parameter choosing an integer value between 0 and 8. 

The bifurcations or the transition phenomena in multiparameter, 
higher-dimensional dynamical systems are more complicated than those 
in single-parameter (perhaps lower-dimensional) dynamical systems. 
Generally speaking, if the dimension of the parameter space is m, there is 
a transition surface (I will use the term hypersurface to represent surfaces 
in high-dimensional spaces which can partition that space) with at most a 
dimension m - 1 ,  which separates rules of regular and chaotic dynamics 
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(though it is also possible to have nonchaotic "bubbles" inside the chaotic 
regime). Passing through the transition hypersurface, one can experience 
a sudden change of dynamical behavior with no other "in-between" 
dynamics, a case called a first-order phase transition, using an analogy with 
statistical physics; or one can experience a gradual change of dynamical 
behavior, with some rules having "in-between" dynamics actually sitting on 
the transition hypersurface, a case called a second-order phase transition. 

Rules with "in-between" dynamics (or complex dynamics, critical 
dynamics, etc.) do not cover the transition hypersurface completely, leaving 
other regions of the transition hypersurface as "holes." If one hits a hole 
while passing through the transition hypersurface, no rules with complex 
dynamics will be encountered. Considering this fact, as well as the fact that 
the dimension of the transition hypersurface is strictly smaller than that of 
the whole parameter space, the chance for observing a complex dynamics 
is extremely small. One has to tune some structural parameters to reach 
not only the transition hypersurface, but also the regions of the transition 
hypersurface with the critical rules. 

As a footnote, I want to relate the general picture presented here on 
transition hypersurface in multiparameter, higher-dimensional dynamical 
systems with the discussions of "self-organized criticality. ''(1) (For readers 
who are not familiar with this model, please skip the next three 
paragraphs.) From our global point of view of rule space, it is easy to 
recognize that one claim about the self-organized criticality is misleading or 
perhaps incorrect, that the criticality in many-degree-of-freedom dynamical 
systems is "fundamentally different from the critical point at phase transi- 
tions in equilibrium statistical mechanics which can be reached only by 
tuning of a parameter. ''(a) 

This claim overlooks the basic fact that defining a rule is equivalent to 
setting the parameters. Any particular critical or complex rule is sitting at 
a particular point on the transition hypersurface which is difficult to reach 
in a random setting of parameters. Also, the claim that the critical 
dynamics is "insensitive to the parameters of the model ''(t) should not be 
correct if the parameter axis is perpendicular to the transition hypersurface. 
It might be the case that some parameters are irrelevant parameters which 
only move the rule along the transition hypersurface. It is thus important 
to identify the parameter which is relevant for making the transition 
happen. 

In fact, the criticality in the "self-organized criticality" models can be 
destroyed not only by changing the structural parameters (e.g., introducing 
inertia terms (5~ 23)), but also by changing some seeming trivial conditions: 
(1) Change the boundary condition. If the boundary condition is periodic 
instead of being close on one side and open on the other side, the dynamics 
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of the avalanche process can either be subcritical--if the initial average 
slope is low, or supercritical (chaotic)-- i f  the initial average slope is very 
high. (5'7) (2) Remove the adding sand process. Besides the avalanche 
process--which follows a cellular automaton rule, there is also an adding 
sand process in the model: one grain of sand is added only if a global 
examination of every site ensures that no slope at some site is larger than 
the threshold value. This globally monitoring process violates the basic 
principle of locality in cellular automata,  and together with the close/open 
boundary condition, it tunes the parameter  (i.e., average slope) to its criti- 
cal value. The tuning parameter  effect will be completely absent if no sand 
is allowed to come in to, as well as go out from, the system. 

In the previous studies of cellular automata  rule spaces, it is the 2 
parameter  which is used as the "relevant" structural parameter. (31' 32.35, 37) 
One can consider the 2 parameter  as a measure of the activation of entries 
in the rule table. (3~ When 2 is close to zero, most three-input configura- 
tions collapse to the 000 configuration, and it is more likely that the 
dynamics is a fixed point. On the other hand, if 2 is close to 0.5, all three- 
input configurations are activated, and dynamics is likely to be chaotic. By 
tuning 2 from 0 to 0.5, it is expected that one will pass through the tran- 
sition hypersurface. 8 

As a crude estimation, the transition hypersurface has a 2 value 
around (76) 

2c "~ 1In 

where n is the number of inputs (e.g., n = 3 for elementary rules). This 
2c is the estimation of the onset of nonzero entropy values. Another 
estimation of 2c, which is the onset of the nonzero expansion rate of the 
perturbation, gives (37) 

2 , , ~ -  1 - ~ - -  
n + l  n + l  

These estimations become more accurate as the number  of inputs goes to 
infinity (while the number of states is kept at 2). Numerically, the maxi- 
mum spatial mutual information is used to locate the transition region 
using the fact that the correlation length become longer near the transition 
hypersurface. (37) This numerically determined 2c is observed to be larger 
than the two estimations mentioned above. (37) 

One conclusion from the numerical study of the transition hypersur- 

8 Rules with 2 parameter equal to 0.5 do not have to be chaotic rules. Actually some non- 
chaotic rules always have 2 parameter equal to 0.5, such as the identity rule, Gacs- 
Kurdyumot~Levin rule, (15) etc. There is a whole class of"unbiased" rules with 5[ = 0.5 that are 
able to lead the system to consensus and nonchaotic dynamics, ca~ 
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non-local CA space (46 rules) 

Fig. 7. The complete "folded" rule space for fully-nonlocal cellular automata.  The ). 
parameter is increased from top to bottom. Each connection between two clusters is a change 
of 1 in one of the mean-field parameters, which either increases or decreases the 2 value by 1. 

face in local cellular automata rule space is that the 2 value at which a 
transition occurs from periodic to chaotic dynamics is not unique. This 
means that the transition hypersurface is not a hyperplane (a hyperplane is 
a hypersurface on which some linear function of the coordinates is a 
constant) to which 2 is perpendicular. To characterize how the transition 
hypersurface "bends," one has to identify different regions of the transition 
surface, and in order to do so, introduce more parameters. 

For  elementary cellular automata with fully nonloeal connections, 
mean-field parameters can characterize the transition hypersurface almost 

Fig. 8. The unfolded rule space for fully nonlocal cellular automata.  The folding, or the 
equivalent relation among  clusters, is indicated by the two-way arrows. The connection 
between different slices of the rule space is not drawn, but one can refer to Fig. 7. 
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exactly. From Fig. 6, one can see that if no- -n3=0,  then 1 < (nl)c<2;  if 
n o = 0  and n 3 = l ,  then 1 < ( n l ) c < 2 ;  and if n o = l  and n3=0,  then 
0 < (n2)c < 1. This characterization of the transition hypersurface is better 
than the one by the 2 parameter. For example, in the case of no = n3 = 0, 
if one chooses 3 < 2c < 4, three chaotic clusters (which contain chaotic rules 
6, 14, 26, and 22) will be counted as being below the transition line 
(remember that 2 is pointing down in Fig. 6), whereas using 1 < (nl)c< 2 
will miss only one chaotic cluster (which contains one chaotic rule 106). 

As a final note, the above discussion about the transition surface 
applies to the "folded" rule space, which contains only the independent 
rules. (36) The folded rule space with the mean-field parametrization for the 
fully-nonlocal elementary cellular automata is shown in Fig. 7. Part of the 
slice with the nonlinear clusters {0, , , . ,  0} bends up to the top, so that 
the 2 is always increased from top to bottom (from 0 to 0.5). Also shown 
is the connection between nonlinear clusters with the linear and inversely- 
linear cluster. Figure 8 shows the original "unfolded" rule space containing 
degenerate clusters. The equivalence relations (or "foldings") are indicated 
by the two-way arrows. In the next section, I will try to determine the 
transition hypersurface by mean-field theory. 

4.2. The Return M a p  of  Density in Mean-F ie ld  Theory  and the 
Determinat ion  of the Transit ion Surface 

The approach adopted in this subsection is to ignore the details in 
dynamics and only examine macroscopic quantities such as the density of 
l's in the mean-field theory. For a review of this approximation scheme, see 
ref. 18. Note that the term "first-order Markov approximation" used in 
ref. 18 is the same with mean-field theory. Other relevant studies are 
included in refs. 17, 53, 71, and 76. The mapping for the density of l's 

d,+l = f (d , )  (4.1) 

is also called the return map. As a crude approximation, fixed-P0int cellular 
automata rules have zero fixed-point solutions of the return map; periodic 
rules have periodic solutions; and chaotic rules have nonzero fixed-point 
solutions. These assumptions are not always true; for example, for some 
periodic rules only the local densities oscillate instead of the global density, 
and some fixed-point rules can have large values of density. The logic 
behind this approximation is that rules with fixed-point dynamics usually 
also have a low density of l's, whereas rules with chaotic dynamics usually 
have a high density of l's (that is, close to 0.5). 

In the mean-field theory as applied to elementary rules, the return map 
is 

dt+l=no(1-d,)J +nld,(1-d,)2 +n2d~(1 -dt)-I-ngd ~ (4.2) 
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By studying how the solution of Eq. (4.2) changes with the mean-field 
parameters, we hope to understand why and when the transition occurs. As 
before, I discuss the three slices of the rule space separately. 

1. The nonlinear clusters (no = n3 = 0): The return map is 

d,  +1 = n l d t (  l - -  d t )  2 + n2d~(1 - d , )  (4.3) 

which is shown in Fig. 9a for all possible n 1 and n2 values. 
The return maps are grouped into four bundles near the origin. The 

lowest one corresponds to n l = 0 ,  the next one to n l =  1, and so on. 
Similarly, the return maps near the point (dt, dt+l)=(1, O) are also 
grouped into four bundles, with the lowest one corresponding to n2 = 0, the 
next one to n2= 1, etc. The intersection of the return map with the 
diagonal line is the fixed-point solution of Eq. (4.3). The slope at the inter- 

(a) 
dt+t 

n 0 = 0  n 3 = 0  

0.750 

0.500 

0.000 

0 . 0 0 0  0.250 0 .SO0 0.750 1.000 

dt 
Fig. 9. The return maps  (the density at time t + 1 versus the density at time t) by mean-field 
theory. Those with the same n 1 values are labeled by letters a (n I = 0), b (n 1 = 1 ), c (n I = 2), 
and d (n 1 = 3); and those with the same n2 values are labeled by letters a' (n2 = 0 ) ,  b '  (n 2 = 1), 
c' ( n2=2) ,  and d'  ( n2=3) .  (a) nonlinear clusters ( n o = n 3 = 0 ) ;  (b) linear clusters ( n o = 0 ,  
n 3 = 1 ) ;  ( c )  inversely-linear cluster (no = 1, n 3 = 0 ) .  
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section measures the stability of that solution, which becomes unstable 
when the absolute value of the slope is larger than 1. 

When nl = 0, none of the return maps intersect with the diagonal line 
rather than the origin, so the null dynamics is expected. When nl = 1, only 
one return map intersects with the diagonal line (that of n2=3) ,  and 
indeed the corresponding cluster contains chaotic rules. When nl > 1, all 
the return maps intersect with the diagonal line at nonzero values, which 
leads to stable fixed-point solutions (except the nl =n2 = 3 cluster, whose 
fixed point is marginal unstable). 

Note that Eq. (4.3) becomes the logistic map ~46) when nl=-n 2. In 
particular, the return map at n~ = n2 = 3 gives the logistic map at the first 
period-doubling bifurcation point. In the logistic map, the transition to 
chaos is by consecutive period-doubling bifurcations when the fixed-point 
or the periodic solutions of the map lose stability. For  our case, because 
macroscopic quantities such as the density generally do not have chaotic 
fluctuation even if the microscopic variables behave chaotically, we do 
not expect the return map (4.3) to become chaotic. There are similar 
discussions in ref. 3 on the difficulties for having macroscopic chaotic 
fluctuations. 

2. The linear clusters (no=0 ,  n3= 1): The return map is 

d, +1 = nld,(1 - dt) 2 + n2d2,(1 - dr) + d~ (4.4) 

which is shown in Fig. 9b for all possible n, and n 2 values. Again, one can 
recognize the bundles near the origin (organized by n~ value) and near the 
point (dr, dr+ 1)= (1, 1) (organized according to n 2 values). 

When n I = 0, no return maps intersect with the diagonal line at non- 
zero values, and null rules are expected (except for n 2 = 3 ,  but then the 
nonzero fixed-point solution is unstable). When n~ = 1 and n2 v ~ 2, there is 
no nonzero fixed-point solution either. If nl = 1 and n 2 = 2, the return map 
is the diagonal line itself, and all possible density values are fixed-point 
solutions (to be discussed in the last section). Only when nl > 1 are there 
nonzero stable fixed-point solutions. So, similar to the nonlinear clusters, 
the transition is induced by increase the n~ parameter. 

3. The inversely-linear clusters (n o = 1, n3 = 0): The return map is 

d,+~ = (1 - dr) 3 + nl d,(1 - d,) 2 -k- nzdt2(1 - d,) (4.5) 

which is shown in Fig. 9c for all possible nl and n2 values. The bundles 
near the point (d,, d , + l ) =  (0, 1) are organized by the n~ parameter, 
whereas those near the point (d,, d , + 1 ) = ( 1 , 0 )  are organized by the n2 
parameter. 

All the return maps intersect with the diagonal line at some nonzero 
value, so no rule is expected to exhibit null dynamics. The difference among 
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these return maps is that some of them have stable fixed-point solutions 
(then the dynamics is probably chaotic), while others have unstable fixed- 
point solutions (then the dynamics is periodic; in particular, if the two- 
cycle is the stable solution, the dynamics is also two-cycle). When n2 = 0, 
no fixed-point solution is stable, so the dynamics is periodic (two-cycle). 
When n2 = 1, except for one case where the return map is the off-diagonal 
line itself (d,+l = 1 - d , )  with nl = 2, all the fixed-point solutions are stable. 
When n 2 > ], all the fixed-point solutions are stable. As a result, the trans- 
ition from periodic to chaotic dynamics can be accomplished by increasing 
the rt 2 parameter. 

In conclusion of this section, by examining the solution of the return 
map by mean-field theory, one can almost completely determine the transi- 
tion point at different parts of the rule space. Not  surprisingly, the method 
is successful only for fully-nonlocal cellular automata, when the statistical 
averaging in mean-field theory is close to reality. If the same mean-field 
theory is applied to local cellular automata, there will be too many excep- 
tions for the theory to be called successful (compare Fig. 2 with Fig. 6). On 
some discussion of how to improve the existing parametrization schemes so 
that one can predict more correctly the dynamical behavior of local cellular 
automata, see ref. 39. 

The observation that either n 1 or rt 2 can be the relevant parameter 
which is perpendicular to the transition surface is equivalent to saying that 
the transition hypersurface is not a single hyperplane. Generally speaking, 
a critical dynamics results from a balance among many competing factors 
in the multiparameter dynamical system. If one moves from one part of the 
rule space to another, the "environment" in which the parameters pre- 
viously achieved a balance is now changed. And that previously relevant 
parameter may no longer be perpendicular to the transition surface in the 
new "environment." It will be interesting to determine the transition hyper- 
surface for a larger cellular automata rule space and rule spaces of other 
multiparameter, many-degrees-of-freedom dynamical systems. 

5. N O N L O C A L  CELLULAR A U T O M A T A  AS C O M P U T E R S  

5.1. Computa t ion  at the Level of  Each Component  

One of the original motivations to study local cellular automata is to 
construct parallel computers which can carry out arbitrary computations 
(universal computers). One way to show that a cellular automaton is 
capable of doing universal computation is to establish the equivalence rela- 
tion between this cellular automaton and the Turing machine3 s, 42) Another 
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way to show this is to establish that the cellular automaton can perform 
three fundamental logical operations: AND, OR, NOT. In fact, the famous 
"game of life" is shown to be able to carry out these three logical opera- 
tions by the collision of gliders. ~2) 

From the proof for the game of life being a universal computer, one 
can see why it is so difficult for a local cellular automaton to be one. 
First of all, the cellular automaton has to produce gliders--moving local 
configurations on either the blank or periodic background. This condition 
imposes a very strong restriction on the rule table. Second, there should be 
different types of gliders and various collision events, so that these 
collisions can simulate the logical operations. 

With this particular realization of a universal computer, the dynamics 
of the "game of life" starting from a random initial condition is quite 
complex. Different gliders emerge, interact with each other, new gliders are 
created from the collision, and so on, until the total number of gliders 
decreases to a minimum. The transient time is long since gliders do not all 
disappear together after collisions. The system is sensitive to perturbations 
in spatial configuration, since flipping a site value can destroy a glider, and 
consequently change the forthcoming glider activities. 

These observations led several authors to speculate that local cellular 
automata which are capable of doing universal computation also show 
complex dynamical behaviors starting from random initial condi- 
tions. (72"74'31'32) Admittedly, this speculation is correct in many cases. 
Programming a universal computer to solve a very hard problem consumes 
a long computing time. This long computing time can be easily interpreted 
as a long transient if the computer is viewed as a dynamical system, and 
a long transient is an important trait of complex dynamics. 

There is one point that is overlooked by the above speculation, 
though: complex dynamics starting from a specially designed (i.e., 
programmed) initial condition do not imply complex dynamics starting 
from any random initial condition. It has actually been shown that some 
local cellular automata which are capable of doing universal computation 
typically exhibit periodic or chaotic dynamics starting from random initial 
conditions ~4z) (but there are also others that indeed exhibit complex 
dynamics). 

For  nonlocal cellular automata, the traditional concept of space is 
destroyed and there will be no gliders. If they are viewed as computers, 
these are "old fashioned" computers with true logical gates--the same on 
each si te--that  carry out computation on the state value. So, a computa- 
tion at the level of a glider in local cellular automata and that at the level 
of a site in nonlocal ones are quite different. 

Since the rule table of local cellular automata takes much of the 
responsibility for constructing gliders, in order to have these gliders, the 
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entries in the rule table have to be much restricted. The situation is 
completely different for nonlocal cellular automata. As long as the rule 
table contains fundamental logical gates, it will be a universal computer. 
This lesser degree of restriction on the rule table makes the connection 
between universal computation and complex dynamics much weaker. 

In the next subsection, I will examine more specifically what logical 
functions a three-input rule contains. By doing so, we will understand 
better the computational abilities for a nonlocal cellular automaton. 

5.2. H o w  Many  Fundamental  Logical Gates 
Does a Rule Contain? 

In the traditional framework of Boolean algebra, there are three 
fundamental operations: AND, OR, NOT. These operations are not inde- 
pendent of each other: N O T  can be represented by some combination of 
AND and OR; or, given NOT, AND and OR can represent each other. In 
practice, any operation pairs listed below can be used to construct a 
universal computer: (AND, NOT),  (OR, NOT),  (NAND, COPY), (NOR, 
COPY). Note that AND, OR are two-input rules, and NOT, COPY are 
one-input rules. 

For  a three-input rule, we can check whether two inputs carry out an 
AND (or OR) operation when the remaining third input is fixed. Similarly, 
we can check whether one input carries out N O T (or COPY) when the 
remaining two inputs are fixed. If a three-input rule contains, say, both 
AND and NOT, one can construct a universal computer from it if 
arbitrary wiring is allowed. Let me do this for the (AND, NOT)  pair in the 
following. Other fundamental operation pairs can be checked similarly. 

Suppose the AND gate operates on the second and the third inputs, 
while the first input is fixed at xjl = 0. By doing so, four bits in the rule 
table are fixed. Then suppose the NOT gate operates on the first input 
(while xj2 = Xj3 ~ 1 ); or, operates on the second input (while xjl = 1, xj3 = 0, 
or xjl = xj3 = 1); or, operates on the third input (while xj, = 1, xj2 = 0, or 
xj~ = x  j2 = 1 ). The rules satisfying these conditions are 

000 -*0  0 0 0 0 

001-+0 0 0 0 0 

0 1 0 - , 0  0 0 0 0 

0 1 1 ~ 1  1 1 1 1 

1 0 0 - - * *  1 �9 1 �9 

101--** �9 1 0 �9 

110 -~ ,  0 �9 �9 1 

1 1 1 - , 0  �9 0 �9 0 

(5.1) 

822/68/5-6-13 
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with the wild card symbol �9 can be either 0 or 1. Each column on the right- 
hand side represents one set of allowed rules. 

Similarly, if the logical gate AND operates on the second and the third 
inputs while the first input is fixed at xjl = 1, and the logical gate N O T  
operates on the first input (while xj2 = xj3 = 0, or xj2 = 0, xj3 = 1, or xj~ = 1, 
x]~=0); or, operates on the second input (while xii = x  j3 =0 ,  or xj~ =0 ,  
xj3= 1); or, operates on the third input (while x j , = x j ~ = 0 ,  or xj~=0, 
xj2 = 1 ), we have the following rules: 

000--+1 * * 1 * 1 * 

001--** 1 * * 1 0 * 

0 1 0 ~ *  * 1 0 * * 1 

0 1 1 ~ *  * * * 0 * 0 

100--*0 0 0 0 0 0 0 

1 0 1 ~ 0  0 0 0 0 0 0 

110--+0 0 0 0 0 0 0 

1 1 1 ~ 1  1 1 1 1 1 1 

(5.2) 

One can also require the AND gate to operate on the first and the 
second inputs, or the first and the third inputs. But since for nonlocal 
cellular automata,  exchanging any two inputs leads to other equivalent 
rules, we will not get any more independent ones. So, Eqs. (5.1) and (5.2) 
include all independent elementary cellular automata  rules that have AND 
and N O T  in their rule table. 

Because (AND, N O T )  is not the only fundamental operation pair, the 
rules listed in Eqs. (5.1) and (5.2) do not exhaust all three-input, nonlocal 
cellular au tomata  which are universal computers. We can see that although 
the dynamical behaviors for almost all elementary nonlocal cellular 
automata  are not complex, many of them are nevertheless universal 
computers. 

Now we ask the question of which rule tables contain AND, NOT,  
and OR. Since OR can be constructed from AND and NOT,  the absence 
of OR will not change the fact of whether that rule is a universal computer 
or not. Nevertheless, with all three gates, the "programming task" can be 
much simplified. 

Checking whether some two inputs operate as OR for all rules listed 
in Eqs. (5.1) and (5.2), we have the following rules: 
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000-- '0  0 0 

0 0 1 ~ 0  0 1 

010--*0 0 1 

0 1 1 ~ 1  1 1 

100-~ 1 1 0 

101 ~ 1 0 0 

1 1 0 ~ 0  1 0 

111--*1 1 1 

(5.3) 

These are rules: 184 (AND on the second and third inputs, NOT on 
the second input, OR on the first and second inputs), 216 (AND on the 
second and third inputs, NOT on the third input, OR on the first and third 
inputs), and 142 (AND, OR on the second and third inputs, N O T on the 
first input). Rule 216 is equivalent to rule 184 by interchanging the second 
and the third inputs. But these two are not equivalent to rule 142. 

The operation represented by rule 184 has an extremely simple inter- 
pretation. One can consider the second input as being the control input. 
When the control input is 0, transmit the first input; when the control 
input is 1, transmit the third input: 

x! if x! = 0  t+ l = 1, J2 (5.4) 
xi x '  if x~ = 1 

J3 J2 

This operation is actually a useful information processing device called 
a selector, or multiplexer. (55) More complicated selectors or multiplexers 
can also be defined, for example, those having two control inputs and four 
transmission inputs. 

Rule 184 is also closely related to another basic logical gate, called 
Fredkin's  gate, proposed as the fundamental gate for conservative universal 
computers t14) (see Fig. 10). Fredkin's gate has three inputs and three 
outputs. Among the three inputs, one is the control input: whenever the 
control input takes the value 0, the other two inputs remain unchanged as 
the outputs; whenever the control input takes the value 1, the other two 
inputs switch. 

That rule 184 is the only one of the two independent nonlocal cellular 
automata to contain three fundamental gates AND, NOT, OR, and that it 
is part of the fundamental gate for conservative computation, are not the 
only interesting observations about this rule. In the next section, I will 
show that rule 184 has very interesting dynamical behaviors, too. 
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Fig. 10. Fredkin's gate: the proposed fundamental gate for conservative computation. 

6. E D G E - O F - C H A O S  D Y N A M I C S  IN N O N L O C A L  CELLULAR 
A U T O M A T A  

In local cellular automata, whenever the name "edge-of-chaos" 
dynamics is mentioned, it almost always refers to rules like the "game of 
life." For these rules, structures at the level much higher than the individual 
site have emerged; activities are ongoing but slow; the limiting dynamics 
may be simple (e.g., periodic), but the transient times are extremely long; 
perturbation to the system sometime propagates, sometimes does not; and 
so on. In other words, they are neither chaotic rules nor typical periodic 
rules. 

The picture depicted above is the mode of edge-of-chaos dynamics in 
locally-coupled dynamical systems. It cannot be applied to nonlocally- 
coupled dynamical systems. It is not clear what the typical modes of 
edge-of-chaos dynamics are for nonlocal systems. In this section, I will 
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discuss one type of dynamical behavior which I consider to be on the edge 
of chaos. This example is the rule 184. 

Actually, many of the discussions in the previous sections point to the 
rule 184 in one way or another: (1) In the rule space parametrized by 
mean-field parameters, rule 184 is located between null rules and chaotic 
rules; (2) the return map  of rule 184 in mean-field theory is the diagonal 
line (only one other rule has the same property, rule 170), that is, the 
density is at a marginally stable position; and (3) rule 184 is the only one 
of the two rules that contains AND, NOT,  OR gates, and with them, it is 
easier to construct any logical functions. 

I will discuss two interesting aspects of the dynamical behavior of rule 

Fig. 11. Illustration that rule 184 exhibits (a) periodic dynamics in degeneracy-permitted 
partially-local connection; and (b) null or periodic dynamics in degeneracy-permitted fully- 
nonlocal connection. The system size is 124, and the number of time steps is 294. 
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184. The first is the fluctuation of density (of l's). This fluctuation indicates 
that there is cooperation among components. The larger the magnitude of 
the fluctuation, the bigger the size of the coherent cluster. The second is the 
transient time as a function of the system size. I will show that the transient 
time increases more or less linearly with the system size, but there is an 
indication that the increase is slightly faster than linear. 

The first topic will be discussed with data derived from the case of the 
distinct-input, partially-local connection (see Fig. lb). The second topic 
will be discussed for the distinct-input fully-nonlocal connection (see Fig. 
ld). The spatial-temporal patterns for the degeneracy-permitted, partially- 
local connection (see Fig. la) are shown in Fig. l la.  And those for the 
degeneracy-permitted, fully-nonlocal connection are shown in Fig. l lb. 
Some statistical results for rule 184, such as the transient times, can be 
quite different between the distinct-input and degeneracy-permitted connec- 
tions. Sensitivity to small details of the wiring is another indication for 
edge-of-chaos dynamics ! 

6.1. Irregular Fluctuat ion of Density 

Figure 12a shows the spatiotemporal pattern for rule 184 with a 
distinct-input partially-local connection. One feature of the pattern is 
that there exist horizontal stripes with either lighter or darker textures, 
indicating that the density fluctuates (the vertical lines are not printer 
errors, but due to the partially-local nature of the wiring). 

The magnitude of the density fluctuation becomes smaller as the 
system size is increased, as suggested by another spatiotemporal pattern for 
a larger system size (Fig. 12b). Figure 13 shows the density as the function 
of time for different system sizes: (a) N =  100; (b) N =  501; (c) N =  1021; 
and (d) N =  5022, which gives better evidence that the density fluctuation 
does become smaller for larger systems. 

To characterize the fluctuation, the return map (i.e., the density at 
time t + 1 versus that at time t) is plotted in Fig. 14, exactly as what is 
predicted by the mean-field theory (see Fig. 9b). If the mean-field theory is 
completely correct, there should be no fluctuation, because d , + l =  dr, and 
the density at time t is the same as the initial density. This should be the 
case in the infinite-system-size limit. The fluctuation we have observed in 
rule 184 is then a finite-size effect. 

Note that macroscopic quantities such as the density typically do not 
exhibit chaotic fluctuations, and the return map for density is unlikely to 
be of the nonlinear form with a "hump," as observed for the return map for 
the time interval between two water drops (which can be considered as a 
microscopic quantity) in the dripping faucet experiment. (54) As discussed in 
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Fig. 12. (Continued) 

Section 4.2, even when the return map for the density in mean-field theory 
can be of a nonlinear form, it does not necessarily have chaotic attractors. 
Then, if the data are taken from simulations or experiments, there is only 
a dot on the plot corresponding to a fixed-point solution. 

Except for smaller system sizes (e.g., N =  70), when the dynamics is 
more easily locked in periodic oscillations, the random fluctuations as 

dz 

i i ~ i i J i 1.00 

0.80 

0.60 

0,40 

0.2~ 

0.00 5~0 10'o0 1~'O0 20'O0 25'o0 30~0 3~'o0 40~ 

t 
(a) 

Fig. 13. The density  f luctuat ion of  rule 184 with dist inct- input part ial ly- local  connect ions ,  
for system size equal  to (a) 100; (b) 501; (c) 1021; and (d) 5022. It is clear that  the magn i tude  
of  the f luctuat ion becomes  smal ler  for larger systems.  
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Fig. 14. 

dt+l r~le-184 
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dt 
Numerically determined return map (dr+ 1 versus d,) for rule 184 with distinct-input 

partially-local connection, at system size 1021. 

illustrated in Fig. 13 seem to go on forever, i.e., these are not  transient 
phenomena.  Al though it is c o m m o n  for open systems to have fluctuations 
in macroscopic  quantities, due to the fluctuation of  the environment,  it is 
nevertheless rare for a closed deterministic system to have them. 

In order  for some macroscopic  quantities to fluctuate in isolated 
systems, there should be a certain cooperat ive interaction among  the com- 
ponents. Take the density of l's, for example: if some components  switch 
their state values from 0 to 1, then only when other components ,  including 
those that  are far away, also have the tendency to switch their state values 
f rom 0 to 1 will the density of l 's  increase. The fluctuation of density in rule 
184 indicates that  a large number  of components  in the system participate 
in a cooperat ive dynamics (they comprise a coherent cluster). 9 

We can understand now why the magni tude of the density fluctuation 
becomes smaller as the system becomes larger. It is because the size of the 
coherent  cluster does not  increase with the system size, or increases less 

9 For a relevant discussion of the cooperative dynamics in high space dimension 
(dimension >~ 5) cellular automata and coupled map lattice, see ref. 6. 
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than linearly with the system size (though I do not have a quantitative 
measure of the size of the cluster). As a result, the number of independent 
coherent clusters is larger when the system becomes larger, and averaging 
over more of the coherent clusters reduces the magnitude of the fluctuation. 

There is a similar discussion of the fluctuation of the macroscopic 
quantities in locally-connected many-degrees-of-freedom dynamical systems 
with continuous state variables, such as the coupled map lattices/3, 19) It is 
argued in these papers that in locally-coupled maps, the correlation length 
(corresponding to the coherent cluster size in our case) cannot be infinity 
in the chaotic regime. More detailed study shows that the correlation 
length is inversely proportional to the square root of the (maximum) 
Lyapunov exponent. (25, 4) Other studies show that the correlation length is 
inversely proportional to the Lyapunov exponent, (3'I9'52) though there 
seems to be an error in the argument which assumes that the spatial 
expansion rate of perturbation is independent of the Lyapunov exponent. 

No matter which result is correct, they all agree that the correlation 
length can be infinite or comparable with the system size only when some 
measure of the "chaosness" such as the Lyapunov exponent is zero or 
small, i.e., these systems with continuous state variables are at the edge of 
chaos. 

For systems with discrete state variables such as cellular automata, the 
Lyapunov exponent cannot be defined. It is the expansion rate of perturba- 
tion that is used to measure the chaosness. (47'37'75)' 10 Analogous to the 
coupled-map lattice system, where the correlation length diverges when the 
Lyapunov exponent approaches zero, here the existence of large coherent 
clusters should also correspond to the almost zero expansion rate of 
perturbations, or consistent with the fact that the system is at the edge 
of chaos. 

6.2. Long Trans ients  Reaching a Consensus S t a t e  

Figure 15a shows a spatiotemporal pattern for rule 184 with a distinct- 
input fully-nonlocal connection. Again, one can notice the fluctuation of 
density, which is even more prominent than that in Fig. 12a. Similar to the 
distinct-input partially-local case, the magnitude of the fluctuation becomes 
smaller for larger system sizes, as evidenced by the spatiotemporal pattern 
in Fig. 15b as well as the plots of the density as a function of time for two 
different system sizes (Fig. 16). There is, however, a major difference 
between the two: the density fluctuation here is a transient behavior; 
whereas in the distinct-input partially-local connection cases the fluctuation 
does not seem to be a transient. 

lO For another discussion on the expansion rate of perturbation in the context of coupled map 
lattices, see ref. 21. 
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Fig. 15. (Continued) 

Fig. 16. 
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After the transient dies out, the system settles in either one of the two 
types of attractors. Both types of attractors are periodic (or static), but one 
has density very close to 0 and another very close to 1. These low- or 
high-density configurations can be called the consensus states. Sometimes, 
after waiting for a long time, one can be sure which attractor the system 
will settle into, because the trend is obvious. However, on other occasions, 
the picture is not that clear. The density can fluctuate toward one of the 
attractors at the beginning, then for some reason swing back toward 
another attractor. Right now, it is poorly understood what has happened. 

Crutchfield and Kaneko (1~ distinguish two classes of the transient 
behaviors in many-degrees-of-freedom dynamical systems: the first one is 
monotonic and there is a convergence toward the limiting attractor; the 
second one is quasistationary, which maintains an attractor-like dynamics 
for a very long time before failing to the real attractors. (6~ 

The transient behavior for rule 184 discussed here seems to belong to 
neither of them. The more appropriate picture here is that the system can 
look uncertain about which attractor it will fall into eventually, and it per- 
forms a random walk before finally "finding out" one of the two attractors. 
More studies on the mechanism for this transient are needed, especially the 
phase space structures. (12) 

There is another way to classify different classes of the transient 
behavior: to see how the transient time increases with system size. 
Although it is shown that coupled map lattices with monotonic transient 
have power law or exponential divergence of the transient time with the 
system size, whereas those with quasistationary transient have super- 
exponential divergence, (~~ it is not clear whether the same conclusion 
holds for other systems. 

I calculate the transient time T as the function of the system size for 
rule 184 with distinct-input fully-nonlocal connections. A simple algorithm 
for determining both cycle length and transient is used, in which the 
configuration at time t is compared with that at time 2t to see whether they 
match (for details, see pp. 7 and 517 of ref. 28, and ref. 11). 

The result is shown in Fig. 17a. For  a given system size, 50 different 
initial configurations and the initial wirings are sampled. The maximum 
system size in this simulation is 6000. The best-fit straight line for all 1000 
data points (following the f i t . c  program in ref. 51), 

log(T) = b + ~ log(N) (6.1) 

gives b = 0.229 +_ 0.071 and ~ = 1.219 +0.011. Figure 17b shows the fitting 
for the average transient times as the function of the system size, which 
gives b = 0.545 + 0.089 and c~ = 1.193 + 0.014, or 

T,v ~ 1.7N 12 (6.2) 
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This power law divergence of the transient time with the system size 
is close to that in elementary local cellular automaton rule110, which has 
T ~  N ~ with c~ ~ 1.08. (38) 

There are several practical issues concerning the accurate determination 
of the exponent e. This paper will not settle these issues, which will be left for 
future publications. First, some preliminary results show that the transient 
time for the degeneracy-permitted case is much shorter, and the fitting for 
those data gives an exponent indistinguishable from 1. It is not clear whether 
c~ should be strictly larger than 1. Second, it is not clear what the typical 
distribution of the transient time is. If the distribution has some unusual long 
tails, a single data point at the tail can change the average value completely. 
In that case, averaging over logarithmic transients should be better. 

Figure 18a shows the cycle length P as a function of the system size. 
The fitting line for all 1000 data points gives c~ = 1.009 _+ 0.019. Figure 18b 
shows the average cycle lengths as a function of the system size. The fitting 
line gives c~ = 0.998 -t- 0.011. The linear increase of the cycle length with the 
System size is because the only few surviving l's (if most of the site values 
are O's) is selected or passed on to another site through the wiring; and the 
random wiring makes it possible that this site value 1 will eventually return 
to the original site, with the path length being proportional to the system 
size. Unlike the transient time scaling, the cycle length scaling seems to be 
trivial. 

In summary, the density of l's in rule 184 with the distinct-input fully- 
nonlocal wiring fluctuates like a random walk. The magnitude of the fluc- 
*.uation is decreased when the system size is increased. Since zero and full 
density regions are traps to the random walker, the fluctuation stops after 
a trap is reached. From a simplified "mean-field" picture, it can be estimated 
that c~ = 1 exactly. ~57) Although it is not conclusive, if it is established that c~ 
is strictly larger than 1, we will know that mean-field theory fails to capture 
the subtle structures in the underlying wiring diagram. More numerical 
results will be included in a future publication (41) and implications for the 
so-called "group meeting problem" (on whether a group meeting can reach 
a consensus, and how long it takes) will be given elsewhere. (4~ 
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